地主的傻儿子豆豆家很大很大,由很多个区域组成。其中有不少封闭的区域,豆豆觉得很不爽于是决定拆墙,把家打通使得他可以访问到每一个区域(包括家外面无限大的区域)。我们用 $N$ 个端点和 $M$ 条边来描述豆豆的家。第 $i$ 个端点的坐标为($x_i, y_i$),第 $i$ 条边连接端点 $A_i$ 和 $B_i$,拆除所需要花费的力气为 $C_i$ 。保证所有边只在端点相交,也就是这是一个平面图,也没有重边和自环。
现在豆豆想知道他最少一共需要花费多少力气?
地主的傻儿子豆豆家很大很大,由很多个区域组成。其中有不少封闭的区域,豆豆觉得很不爽于是决定拆墙,把家打通使得他可以访问到每一个区域(包括家外面无限大的区域)。我们用 $N$ 个端点和 $M$ 条边来描述豆豆的家。第 $i$ 个端点的坐标为($x_i, y_i$),第 $i$ 条边连接端点 $A_i$ 和 $B_i$,拆除所需要花费的力气为 $C_i$ 。保证所有边只在端点相交,也就是这是一个平面图,也没有重边和自环。
现在豆豆想知道他最少一共需要花费多少力气?
现有一个长度为 $n$ 的序列 ${x_1, x_2, \cdots, x_n}$,要求支持两种操作:
0 l r
表示将 $i \in [l, r], x_i \leftarrow x_i^2 \bmod p$1 l r
询问 $\sum\limits_{i = l} ^ r x_i$$n$ 个人来做实验,有 $m$ 个房间,一开始所有人都在 $1$ 号房间里,有两个操作:
实验会获得一些实验信息点数,点数为房间里的人数(不会重复增加点数),求每次操作获得的点数。
给定一个初始集合和目标集合,有两种操作:
要求用最小步数使初始集合变为目标集合,求最小步数。
给定一棵以 $1$ 为根的有根树,初始所有节点颜色为 $1$,每次将距离节点 $a$ 不超过 $l$ 的 $a$ 的子节点染成 $c$,或询问点 $a$ 的颜色。
Pine 开始了从 $ S $ 地到 $ T $ 地的征途。
从 $ S $ 地到 $ T $ 地的路可以划分成 $ n $ 段,相邻两段路的分界点设有休息站。
Pine 计划用 $ m $ 天到达 $ T $ 地。除第 $ m $ 天外,每一天晚上 Pine 都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine 希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助 Pine 求出最小方差是多少。
设方差是 $ v $,可以证明,$ v \times m ^ 2 $ 是一个整数。为了避免精度误差,输出结果时输出 $ v \times m ^ 2 $。
给出一个 $n$ 的排列,进行 $m$ 次操作,每次操作是将一个区间升序或降序排序。
请你输出 $m$ 次操作后第 $p$ 个位置的值。
给定相离的两个圆(圆心坐标以及半径)以及圆外的一个定点 $P$,求出过点 $P$ 的且与已知的两个圆外切的所有圆。
$G$ 系共有 $n$ 位同学,$M$ 门必修课。这 $N$ 位同学的编号为 $0$ 到 $N - 1$ 的整数,其中 $B$ 神的编号为 $0$号。这 $M$ 门必修课编号为 $0$ 到 $M - 1$ 的整数。一位同学在必修课上可以获得的分数是 $1$ 到 $U_i$ 中的一个整数。如果在每门课上 $A$ 获得的成绩均小于等于 $B$ 获得的成绩,则称 $A$ 被 $B$ 碾压。在 $B$ 神的说法中,$G$ 系共有 $K$ 位同学被他碾压(不包括他自己),而其他 $N-K-1$ 位同学则没有被他碾压。$D$ 神查到了 $B$ 神每门必修课的排名。这里的排名是指:如果 $B$ 神某门课的排名为 $R$,则表示有且仅有 $R-1$ 位同学这门课的分数大于 $B$ 神的分数,有且仅有 $N-R$ 位同学这门课的分数小于等于 $B$ 神(不包括他自己)。我们需要求出全系所有同学每门必修课得分的情况数,使其既能满足B神的说法,也能符合 $D$ 神查到的排名。这里两种情况不同当且仅当有任意一位同学在任意一门课上获得的分数不同。你不需要像 $D$ 神那么厉害,你只需要计算出情况数模 $10 ^ 9 + 7$ 的余数就可以了。
Update your browser to view this website correctly. Update my browser now