「SPOJ DIVCNT[2/3/k]」-ExtendedEratosthenesSieve

求 $\sum\limits_{i = 1} ^ n \sigma_{0}(i ^ k)$,$n, k \leq 10 ^ {10}, T \leq 10000$。

链接

SPOJ DIVCNT2
SPOJ DIVCNT3
SPOJ DIVCNTK

题解

令 $f(n) = \sigma_0(n ^ k)$,那么 $f(1) = 1$
当 $n = p$,$p$ 为质数时,$f(p) = k + 1$
当 $n = p ^ e$ 时,$f(p ^ e) = ek + 1$

所以我们只需要 $p ^ 0$ 的前缀和,然后直接上扩展埃拉托色尼筛法就完了。

真的比 $\varphi$ 还好筛(逃)

DIVCNT2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* Copyright (c) 2017-2018, xehoth
* All rights reserved.
* 「SPOJ DIVCNT2」23-01-2018
* Extended Eratosthenes Sieve
* @author xehoth
*/
#include <bits/stdc++.h>

std::vector<long long> pre, suc;
std::vector<int> primes;
int M;
long long n;

long long rec(long long res, int last, long long mul) {
long long t = (res > M ? suc[n / res] : pre[res]) - pre[primes[last] - 1];
long long ret = mul * t * 3;
for (int i = last, p; i < (int)primes.size(); i++) {
p = primes[i];
if ((long long)p * p > res) break;
for (long long q = p, nrest = res, nmul = mul * 3; q * p <= res;
q *= p) {
ret += rec(nrest /= p, i + 1, nmul);
nmul += mul * 2;
ret += nmul;
}
}
return ret;
}

inline long long extEratosthenesSieve(const long long n) {
M = sqrt(n);
pre.clear();
suc.clear();
primes.clear();
pre.resize(M + 1);
suc.resize(M + 1);
for (int i = 1; i <= M; i++) {
pre[i] = i - 1;
suc[i] = n / i - 1;
}
for (int p = 2, end; p <= M; p++) {
if (pre[p] == pre[p - 1]) continue;
primes.push_back(p);
const long long pcnt = pre[p - 1], q = (long long)p * p, m = n / p;
end = std::min<long long>(M, n / q);
for (int i = 1, w = M / p; i <= w; i++) suc[i] -= suc[i * p] - pcnt;
for (int i = M / p + 1; i <= end; i++) suc[i] -= pre[m / i] - pcnt;
for (int i = M; i >= q; i--) pre[i] -= pre[i / p] - pcnt;
}
primes.push_back(M + 1);
return n > 1 ? 1 + rec(n, 0, 1) : 1;
}

int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(NULL);
std::cout.tie(NULL);
int T;
for (std::cin >> T; T--;) {
std::cin >> n;
std::cout << extEratosthenesSieve(n) << '\n';
}
return 0;
}

DIVCNT3

和上面只有几个数字的差别

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* Copyright (c) 2017-2018, xehoth
* All rights reserved.
* 「SPOJ DIVCNT3」23-01-2018
* Extended Eratosthenes Sieve
* @author xehoth
*/
#include <bits/stdc++.h>

std::vector<long long> pre, suc;
std::vector<int> primes;
int M;
long long n;

long long rec(long long res, int last, long long mul) {
long long t = (res > M ? suc[n / res] : pre[res]) - pre[primes[last] - 1];
long long ret = mul * t * 4;
for (int i = last, p; i < (int)primes.size(); i++) {
p = primes[i];
if ((long long)p * p > res) break;
for (long long q = p, nrest = res, nmul = mul * 4; q * p <= res;
q *= p) {
ret += rec(nrest /= p, i + 1, nmul);
nmul += mul * 3;
ret += nmul;
}
}
return ret;
}

inline long long extEratosthenesSieve(const long long n) {
M = sqrt(n);
pre.clear();
suc.clear();
primes.clear();
pre.resize(M + 1);
suc.resize(M + 1);
for (int i = 1; i <= M; i++) {
pre[i] = i - 1;
suc[i] = n / i - 1;
}
for (int p = 2, end; p <= M; p++) {
if (pre[p] == pre[p - 1]) continue;
primes.push_back(p);
const long long pcnt = pre[p - 1], q = (long long)p * p, m = n / p;
end = std::min<long long>(M, n / q);
for (int i = 1, w = M / p; i <= w; i++) suc[i] -= suc[i * p] - pcnt;
for (int i = M / p + 1; i <= end; i++) suc[i] -= pre[m / i] - pcnt;
for (int i = M; i >= q; i--) pre[i] -= pre[i / p] - pcnt;
}
primes.push_back(M + 1);
return n > 1 ? 1 + rec(n, 0, 1) : 1;
}

int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(NULL);
std::cout.tie(NULL);
int T;
for (std::cin >> T; T--;) {
std::cin >> n;
std::cout << extEratosthenesSieve(n) << '\n';
}
return 0;
}

DIVCNTK

早知道先写这个

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
/**
* Copyright (c) 2017-2018, xehoth
* All rights reserved.
* 「SPOJ DIVCNTK」23-01-2018
* Extended Eratosthenes Sieve
* @author xehoth
*/
#include <bits/stdc++.h>

std::vector<uint64_t> pre, suc;
std::vector<int> primes;
int M;
uint64_t n, k;

uint64_t rec(uint64_t res, int last, uint64_t mul) {
uint64_t t = (res > M ? suc[n / res] : pre[res]) - pre[primes[last] - 1];
uint64_t ret = mul * t * (k + 1);
for (int i = last, p; i < (int)primes.size(); i++) {
p = primes[i];
if ((uint64_t)p * p > res) break;
for (uint64_t q = p, nrest = res, nmul = mul * (k + 1); q * p <= res;
q *= p) {
ret += rec(nrest /= p, i + 1, nmul);
nmul += mul * k;
ret += nmul;
}
}
return ret;
}

inline uint64_t extEratosthenesSieve(const uint64_t n) {
M = sqrt(n);
pre.clear();
suc.clear();
primes.clear();
pre.resize(M + 1);
suc.resize(M + 1);
for (int i = 1; i <= M; i++) {
pre[i] = i - 1;
suc[i] = n / i - 1;
}
for (int p = 2, end; p <= M; p++) {
if (pre[p] == pre[p - 1]) continue;
primes.push_back(p);
const uint64_t pcnt = pre[p - 1], q = (uint64_t)p * p, m = n / p;
end = std::min<uint64_t>(M, n / q);
for (int i = 1, w = M / p; i <= w; i++) suc[i] -= suc[i * p] - pcnt;
for (int i = M / p + 1; i <= end; i++) suc[i] -= pre[m / i] - pcnt;
for (int i = M; i >= q; i--) pre[i] -= pre[i / p] - pcnt;
}
primes.push_back(M + 1);
return n > 1 ? 1 + rec(n, 0, 1) : 1;
}

int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(NULL);
std::cout.tie(NULL);
int T;
for (std::cin >> T; T--;) {
std::cin >> n >> k;
std::cout << extEratosthenesSieve(n) << '\n';
}
return 0;
}
#

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×