「补档计划」动态规划

dp 太弱,先补动规专题…

「UVA 11584」Partitioning by Palindromes

链接

UVA 11584

题意

将一个字符串划分成若干个子串,使得每个子串都是回文串,求最少划分次数。

题解

一道很简单的 dp,值得一提的是 pkusc 2017 考了这道原题….
令 $f[i]$ 表示 $1 \cdots i$ 最少划分的次数,如果 $s_j \cdots s_i$ 为回文串,则 $f[i] = min(f[i], f[j - 1] + 1)$。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
/**
* 「UVA 11584」Partitioning by Palindromes 05-06-2017
* dp
* @author xehoth
*/
#include <bits/stdc++.h>

namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}

inline int read(char *buf) {
register int s = 0;
register char c;
while (c = read(), isspace(c) && c != -1)
;
if (c == -1) {
*buf = 0;
return -1;
}
do
buf[s++] = c;
while (c = read(), !isspace(c) && c != -1);
buf[s] = 0;
return s;
}

const int OUT_LEN = 1000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 1010;

bool isPalindrome[MAXN][MAXN];
char s[MAXN];

inline void solve() {
using namespace IO;
register int t;
for (read(t); t--;) {
register int n = read(s);
memset(isPalindrome, 0, sizeof(isPalindrome));
for (register int i = 0; i < n; i++) {
for (register int l = i, r = i; l >= 0 && r < n && s[l] == s[r];
l--, r++)
isPalindrome[l + 1][r + 1] = isPalindrome[r + 1][l + 1] = true;
for (register int l = i, r = i + 1; l >= 0 && r < n && s[l] == s[r];
l--, r++)
isPalindrome[l + 1][r + 1] = isPalindrome[r + 1][l + 1] = true;
}
static int f[MAXN];
for (register int i = 1; i <= n; i++) {
f[i] = i;
for (register int j = 1; j <= i; j++)
if (isPalindrome[i][j]) f[i] = std::min(f[j - 1] + 1, f[i]);
}
print(f[n]), print('\n');
}
}
}

int main() {
#ifdef DBG
freopen("in.in", "r", stdin);
#endif
Task::solve();
IO::flush();
return 0;
}

「CodeVS 3269」混合背包

链接

CodeVS 3269

题解

01 背包和完全背包直接写就好了,对于多重背包,这里使用单调队列优化。
对于朴素的多重背包:

$$f[v] = max(f[v], f[v - k * c] + k * w), k \in [0, n]$$

令 $m = v / c, r = v % c$。

m 表示当前状态的背包容量全部用来放当前物品能放的件数。

r 表示当前状态的背包容量全部用来放当前物品剩余的容量。

我们将原来的枚举 v 改为枚举 r,在 $[0, m]$ 上枚举 d,以 $(m - d) * c + r$ 代替 v

$$f[(m - d) * c + r] = max(f[(m - d) * c + r] + d * w, d \in [0, m], r \in [0, V \ \% \ c])$$

令 $k = m - d$ 代入得

$$f[k * c + r] = max(f[k * c + r] + (m - k) * w, k \in [m - n, m], r \in [0, V \ \% \ c])$$ $$f[k * c + r] = max(f[k * c + r] - k * w, k \in [m - n, m], r \in [0, V \ \% \ c]) + m * w$$ 令 $g(k, r) = f[k * c + r] - k * w$ 代入得 $$f[k * c + r] = max(g(k, r), k \in [m - n, m], r \in [0, V \ \% \ c]) + m * w$$

由此得到一个可以用单调队列优化的方程,结合方程我们知道,$f[k * c + r]$ 是由之前的 n + 1 项的最大值推出的,于是用一个长度为 n + 1 的单调队列维护 $g(k, r)$,就可以 $O(1)$ 地求出每个状态。

需要注意的是,在使用单调队列实现这个算法时,方程中的 m 应该被替换为当前状态对应的 k,因为枚举的 k 总是当前状态的背包容量全部用来放当前物品的最大件数

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
/**
* 「CodeVS 3269」混合背包 09-06-2017
* dp + 单调队列
* @author xehoth
*/
#include <bits/stdc++.h>

namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}

const int OUT_LEN = 1000000;
char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 200;
const int MAXV = 200000;

template <typename T, typename Comparator = std::less<T> >
class MonotoneQueue : public std::deque<std::pair<T, int> > {
public:
typedef std::pair<T, int> Pair;
typedef std::deque<Pair> super;

MonotoneQueue(Comparator cmp = Comparator()) : cmp(cmp), pos(0), cur(0) {}

inline void push(const T &v) {
while (!super::empty() && cmp(super::front().first, v))
super::pop_front();
super::push_front(Pair(v, cur++));
}

inline void pop() {
if (super::back().second == pos++) super::pop_back();
}

inline const T &top() { return super::back().first; }

inline void clear() { super::clear(), pos = cur = 0; }

inline int size() { return cur - pos; }

private:
int pos, cur;
Comparator cmp;
};

int v;
int f[MAXV + 1];

inline void pack(int c, int w, int n) {
if (n == 1) {
for (register int v = Task::v; v >= c; v--)
f[v] = std::max(f[v], f[v - c] + w);
} else if (n == -1) {
for (register int v = c; v <= Task::v; v++)
f[v] = std::max(f[v], f[v - c] + w);
} else {
n = std::min(n, Task::v / c);
for (register int r = 0; r < c; r++) {
static MonotoneQueue<int> q;
q.clear();
register int m = (Task::v - r) / c;
for (register int k = 0; k <= m; k++) {
if (q.size() == n + 1) q.pop();
q.push(f[k * c + r] - k * w);
f[k * c + r] = q.top() + k * w;
}
}
}
}

inline void solve() {
using namespace IO;
register int n;
read(n), read(v);
for (register int i = 0, c, w, t; i < n; i++)
read(c), read(w), read(t), pack(c, w, t);
print(f[v]);
}
}

int main() {
Task::solve();
IO::flush();
return 0;
}

「UVA 11137」Ingenuous Cubrency

链接

UVA 11137

题意

给出一个正整数 $n (n \leq 10000)$,求有多少种方案把 $n$ 表示成几个正整数的立方和的形式。

题解

考虑将每个立方数看做物品,将 $n$ 看作背包,则问题转化为求装满背包的方案

我们直接做完全背包就好了,即
$$f[v] = f[v] + f[v - c], v \in [c, V]$$

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/**
* 「UVA 11137」Ingenuous Cubrency 12-06-2017
* dp
* @author xehoth
*/
#include <bits/stdc++.h>

namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline bool read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return false;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
return true;
}

const int OUT_LEN = 1000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 10000;

unsigned long long f[MAXN] = {1}, max;

const int CUBE[22] = {0, 1, 8, 27, 64, 125, 216, 343,
512, 729, 1000, 1331, 1728, 2197, 2744, 3375,
4096, 4913, 5832, 6859, 8000, 9261};

inline void init(int n) {
for (register int i = 1; i <= 21; i++)
for (register int v = CUBE[i]; v <= n; v++) f[v] += f[v - CUBE[i]];
}

inline void print(int n) { IO::print(f[n]), IO::print('\n'); }

inline void solve() {
static std::vector<int> q;
q.reserve(MAXN);
for (register int n; IO::read(n);) q.push_back(n);
init(*std::max_element(q.begin(), q.end()));
std::for_each(q.begin(), q.end(), print);
}
}

int main() {
Task::solve();
IO::flush();
return 0;
}

「BZOJ 1334」「Baltic2008」Elect

链接

BZOJ 1334

题解

显然当席位最少的党是多余的时,方案不合法

f[i] 表示联合内阁席位数为 $i$ 时,席位最少的党的席位数的最大值。

完成 DP 后扫描整个数组,满足 $i - f[i] \leq \frac {m} {2}$ 的最大的 $i$ 即为答案。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/**
* 「BZOJ 1334」「Baltic2008」Elect 12-06-2017
* dp
* @author xehoth
*/
#include <bits/stdc++.h>

namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}

const int OUT_LEN = 1000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 100000;

inline void solve() {
using namespace IO;
static int f[MAXN], a[MAXN];
register int n;
read(n);
for (register int i = 0; i < n; i++) read(a[i]);
register int V = std::accumulate(a, a + n, 0);
f[0] = INT_MAX;
for (register int i = 0; i < n; i++)
for (register int v = V; v >= a[i]; v--)
f[v] = std::max(f[v], std::min(f[v - a[i]], a[i]));
for (register int i = V; i >= 0; i--) {
if (i - f[i] <= V / 2) {
print(i);
break;
}
}
}
}

int main() {
#ifdef DBG
freopen("in.in", "r", stdin);
#endif
Task::solve();
IO::flush();
return 0;
}

「SCOI 2009」粉刷匠

链接

BZOJ 1296

题解

对于每一行,令 $f[j][k]$ 表示前 $j$ 个格子刷 $k$ 次的最大正确数量。枚举最后一次刷的区间,刷较多的颜色。

令 $w[i][j]$ 表示第 $i$ 行刷 $j$ 次的最大正确数量。

最后用背包求解即可,即令 $g[j]$ 表示刷 $j$ 次的最大正确数量,$g[j] = max(g[j], g[j - k] + w[i][k])$

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
/**
* 「SCOI 2009」粉刷匠 14-06-2017
* dp
* @author xehoth
*/
#include <bits/stdc++.h>

namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}

inline int read(char *buf) {
register int s = 0;
register char c;
while (c = read(), isspace(c) && c != -1)
;
if (c == -1) {
*buf = 0;
return -1;
}
do
buf[s++] = c;
while (c = read(), !isspace(c) && c != -1);
buf[s] = 0;
return s;
}

const int OUT_LEN = 1000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 50;
const int MAXM = 50;
const int MAXT = 2500;

inline void solve() {
using namespace IO;
register int n, m, t;
read(n), read(m), read(t);
static int w[MAXN][MAXM + 1], f[MAXM + 1][MAXM + 1];
for (register int i = 0; i < n; i++) {
memset(f, 0, sizeof(f));
static char s[MAXM];
read(s);
for (register int j = 1; j <= m; j++) {
for (register int k = 1; k <= j; k++) {
register int cnt[2] = {0, 0};
for (register int l = j - 1; l >= k - 1; l--) {
cnt[s[l] - '0']++;
f[j][k] = std::max(f[j][k],
f[l][k - 1] + std::max(cnt[0], cnt[1]));
w[i][k] = std::max(w[i][k], f[j][k]);
}
}
}
}

static int g[MAXT + 1];
for (int i = 0; i < n; i++) {
for (int j = t; j >= 0; j--) {
for (int k = 1; k <= m; k++) {
if (k <= j) g[j] = std::max(g[j], g[j - k] + w[i][k]);
}
}
}

print(g[t]);
}
}

int main() {
#ifdef DBG
freopen("in.in", "r", stdin);
#endif
Task::solve();
IO::flush();
return 0;
}

「BZOJ 4247」挂饰

链接

BZOJ 4247

题解

允许背包的容量为负,然后做 01 背包,答案为背包容量为 $-n$ 到 $1$ 的结果的最大值。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
#include <bits/stdc++.h>
/**
* 「BZOJ 4247」挂饰 16-06-2017
* dp
* @author xehoth
*/
namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}

const int OUT_LEN = 1000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, oh - obuf, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 2000;

inline void solve() {
using namespace IO;
register int n;
read(n);
static struct Array {
int a[MAXN * 2 + 1];
int &operator[](const int i) { return a[i + MAXN]; }
} f[MAXN + 1];
for (register int i = -n; i < 0; i++) f[0][i] = INT_MIN;
for (register int i = 1, x, v; i <= n; i++) {
read(x), read(v);
const int w = 1 - x;
for (register int j = -n; j <= n; j++) {
if (j - w >= -n && j - w <= n && f[i - 1][j - w] != INT_MIN)
f[i][j] = std::max(f[i - 1][j], f[i - 1][j - w] + v);
else if (j - w > n)
f[i][j] = std::max(f[i - 1][j], f[i - 1][n] + v);
else
f[i][j] = f[i - 1][j];
}
}
print(*std::max_element(&f[n][-n], &f[n][1] + 1));
}
}

int main() {
#ifdef DBG
freopen("in.in", "r", stdin);
#endif
Task::solve();
IO::flush();
return 0;
}

「BZOJ1677」Sumsets 求和

链接

BZOJ1677

题解

把 $2 ^ i$ 看作物品,$n$ 看作背包,然后求装满背包的方案数就好了。

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#include <bits/stdc++.h>
/**
* 「BZOJ1677」Sumsets 求和 17-06-2017
* dp
* @author xehoth
*/
namespace IO {

inline char read() {
static const int IN_LEN = 1000000;
static char buf[IN_LEN], *s, *t;
s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
return s == t ? -1 : *s++;
}

template <typename T>
inline void read(T &x) {
static char c;
static bool iosig;
for (c = read(), iosig = false; !isdigit(c); c = read()) {
if (c == -1) return;
c == '-' ? iosig = true : 0;
}
for (x = 0; isdigit(c); c = read()) x = (x + (x << 2) << 1) + (c ^ '0');
iosig ? x = -x : 0;
}

const int OUT_LEN = 1000000;

char obuf[OUT_LEN], *oh = obuf;

inline void print(char c) {
oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
*oh++ = c;
}

template <typename T>
inline void print(T x) {
static int buf[30], cnt;
if (x == 0) {
print('0');
} else {
x < 0 ? (print('-'), x = -x) : 0;
for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
while (cnt) print((char)buf[cnt--]);
}
}

inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
}

namespace Task {

const int MAXN = 1000000;
const int MOD = 1000000000;

inline void solve() {
using namespace IO;
static int f[MAXN + 1] = {1};
register int n;
read(n);
for (register int i = 0; 1 << i <= n; i++)
for (register int j = 1 << i; j <= n; j++)
(f[j] += f[j - (1 << i)]) %= MOD;
print(f[n]);
}
}

int main() {
#ifdef DBG
freopen("in.in", "r", stdin);
#endif
Task::solve();
IO::flush();
return 0;
}
#

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×