| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 
 | 
 
 
 
 
 
 #include <bits/stdc++.h>
 
 namespace IO {
 
 inline char read() {
 static const int IN_LEN = 1000000;
 static char buf[IN_LEN], *s, *t;
 s == t ? t = (s = buf) + fread(buf, 1, IN_LEN, stdin) : 0;
 return s == t ? -1 : *s++;
 }
 
 template <typename T>
 inline void read(T &x) {
 static char c;
 static bool iosig;
 for (c = read(), iosig = false; !isdigit(c); c = read()) {
 if (c == -1) return;
 c == '-' ? iosig = true : 0;
 }
 for (x = 0; isdigit(c); c = read()) x = x * 10 + (c ^ '0');
 iosig ? x = -x : 0;
 }
 
 inline void read(char &c) {
 while (c = read(), isspace(c) && c != -1)
 ;
 }
 
 inline int read(char *buf) {
 register int s = 0;
 register char c;
 while (c = read(), isspace(c) && c != -1)
 ;
 if (c == -1) {
 *buf = 0;
 return -1;
 }
 do
 buf[s++] = c;
 while (c = read(), !isspace(c) && c != -1);
 buf[s] = 0;
 return s;
 }
 
 const int OUT_LEN = 1000000;
 
 char obuf[OUT_LEN], *oh = obuf;
 
 inline void print(char c) {
 oh == obuf + OUT_LEN ? (fwrite(obuf, 1, OUT_LEN, stdout), oh = obuf) : 0;
 *oh++ = c;
 }
 
 template <typename T>
 inline void print(T x) {
 static int buf[30], cnt;
 if (x == 0) {
 print('0');
 } else {
 x < 0 ? (print('-'), x = -x) : 0;
 for (cnt = 0; x; x /= 10) buf[++cnt] = x % 10 | 48;
 while (cnt) print((char)buf[cnt--]);
 }
 }
 
 inline void print(const char *s) {
 for (; *s; s++) print(*s);
 }
 
 inline void flush() { fwrite(obuf, 1, oh - obuf, stdout); }
 
 struct InputOutputStream {
 template <typename T>
 inline InputOutputStream &operator>>(T &x) {
 read(x);
 return *this;
 }
 
 template <typename T>
 inline InputOutputStream &operator<<(const T &x) {
 print(x);
 return *this;
 }
 
 ~InputOutputStream() { flush(); }
 } io;
 }
 
 namespace {
 
 using IO::io;
 typedef unsigned long long ulong;
 #define long long long
 const int MAXN = 100000;
 const int MAX_BUC = 1000000;
 
 struct Fibonacci {
 int k, b[2], c[2];
 
 inline void mulMod(int *x, int *y, const int MOD) {
 register int tmp = (((ulong)x[0] * y[0]) + ((ulong)x[1] * y[1])) % MOD;
 x[1] = (((ulong)x[0] + x[1]) * y[1] + (ulong)x[1] * y[0]) % MOD;
 x[0] = tmp;
 }
 
 inline void pow(int *a, int b, int *ans, const int MOD) {
 for (; b; b >>= 1, mulMod(a, a, MOD))
 (b & 1) ? mulMod(ans, a, MOD) : (void)0;
 }
 
 inline int fix(int b, const int MOD) { return b >= MOD ? b - MOD : b; }
 
 inline int getLinearRecursion(const int n, const int MOD) {
 c[0] = 0, b[1] = 0, c[1] = 1, b[0] = 1, pow(c, n, b, MOD);
 return fix(b[0] + b[1], MOD);
 }
 
 inline bool check(const int n, const int MOD) {
 c[0] = 0, b[1] = 0, c[1] = 1, b[0] = 1, pow(c, n, b, MOD);
 return b[0] == 1 && b[1] == 0;
 }
 };
 
 template <typename T>
 inline T gcd(T x, T y) {
 for (register T t = 0; y != 0;) t = x % y, x = y, y = t;
 return x;
 }
 
 struct Task {
 Fibonacci fib;
 
 int prime[MAXN + 1], pcnt;
 bool vis[MAXN + 1];
 
 inline void fastLinearSieveMethod() {
 prime[0] = 2, prime[1] = 3, prime[2] = 5, prime[3] = 7;
 pcnt = 4;
 for (register int i = 11; i <= MAXN; i += 2) {
 if (!vis[i]) prime[pcnt++] = i;
 for (register int j = 0, t; j < pcnt && (t = i * prime[j]) <= MAXN;
 j++) {
 vis[t] = true;
 if (i % prime[j] == 0) break;
 }
 }
 }
 
 long buc[MAX_BUC + 1], fs[MAX_BUC + 1];
 
 inline long modPow(long a, long b, const int MOD) {
 register long ret = 1;
 for (; b; b >>= 1, a = a * a % MOD) (b & 1) ? ret = ret * a % MOD : 0;
 return ret;
 }
 
 inline bool isQuadraticResidue(const int n, const int p) {
 return modPow(n, p - 1 >> 1, p) == 1;
 }
 
 int l, x, fac[100][2];
 
 inline void getFactorT(long count, int step) {
 if (step == l) {
 fs[x++] = count;
 return;
 }
 register long sum = 1;
 for (register int i = 0; i < fac[step][1]; i++)
 sum *= fac[step][0], getFactorT(count * sum, step + 1);
 getFactorT(count, step + 1);
 }
 
 inline long solvePrime(const int p) {
 if (p <= MAX_BUC && buc[p]) return buc[p];
 register int t = (isQuadraticResidue(5, p) ? p - 1 : 2 * p + 2);
 l = 0;
 for (register int i = 0; i < pcnt; i++) {
 if (prime[i] > t / prime[i]) break;
 if (t % prime[i] == 0) {
 register int count = 0;
 fac[l][0] = prime[i];
 while (t % prime[i] == 0) count++, t /= prime[i];
 fac[l++][1] = count;
 }
 }
 if (t > 1) fac[l][0] = t, fac[l++][1] = 1;
 x = 0, getFactorT(1, 0);
 std::sort(fs, fs + x);
 for (register int i = 0; i < x; i++) {
 if (fib.check(fs[i], p)) {
 if (p <= MAX_BUC) buc[p] = fs[i];
 return fs[i];
 }
 }
 }
 
 inline long modPow(long a, long b) {
 register long ret = 1;
 for (; b; b >>= 1, a = a * a) (b & 1) ? ret = ret * a : 0;
 return ret;
 }
 
 inline long solve(int n) {
 register long ans = 1, cnt = 0;
 for (register int i = 0; i < pcnt; i++) {
 if (prime[i] > n / prime[i]) break;
 if (n % prime[i] == 0) {
 register int count = 0;
 while (n % prime[i] == 0) count++, n /= prime[i];
 cnt = modPow(prime[i], count - 1) * solvePrime(prime[i]);
 ans = (ans / gcd(ans, cnt)) * cnt;
 }
 }
 if (n > 1) cnt = solvePrime(n), ans = ans / gcd(ans, cnt) * cnt;
 return ans;
 }
 
 inline void solve() {
 fastLinearSieveMethod();
 register int t;
 buc[2] = 3, buc[3] = 8, buc[5] = 20;
 io >> t;
 for (register int n; t--;) {
 io >> n;
 io << solve(n) << '\n';
 }
 }
 } task;
 #undef long
 }
 
 int main() {
 task.solve();
 return 0;
 }
 
 |